Consensus Clustering + Meta Clustering = Multiple Consensus Clustering

نویسندگان

  • Yi Zhang
  • Tao Li
چکیده

Consensus clustering and meta clustering are two important extensions of the classical clustering problem. Given a set of input clusterings of a given dataset, consensus clustering aims to find a single final clustering which is a better fit in some sense than the existing clusterings, and meta clustering aims to group similar input clusterings together so that users only need to examine a small number of different clusterings. In this paper, we present a new approach, MCC (stands for multiple consensus clustering), to explore multiple clustering views of a given dataset from the input clusterings by combining consensus clustering and meta clustering. In particular, given a set of input clusterings of a particular data set, MCC employs meta clustering to cluster the input clusterings and then uses consensus clustering to generate a consensus for each cluster of the input clusterings. Extensive experimental results on 11 real world data sets demonstrate the effectiveness of our proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy-based Consensus for Distributed Data Clustering

The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...

متن کامل

Multiple data structure discovery through global optimisation, meta clustering and consensus methods

When dealing with real data, clustering becomes a very complex problem, usually admitting many reasonable solutions. Moreover, even if completely different, such solutions can appear almost equivalent from the point of view of classical quality measures such as the distortion value. This implies that blind optimisation techniques alone are prone to discard qualitatively interesting solutions. I...

متن کامل

A new ensemble clustering method based on fuzzy cmeans clustering while maintaining diversity in ensemble

An ensemble clustering has been considered as one of the research approaches in data mining, pattern recognition, machine learning and artificial intelligence over the last decade. In clustering, the combination first produces several bases clustering, and then, for their aggregation, a function is used to create a final cluster that is as similar as possible to all the cluster bundles. The inp...

متن کامل

انتخاب اعضای ترکیب در خوشه‌بندی ترکیبی با استفاده از رأی‌گیری

Clustering is the process of division of a dataset into subsets that are called clusters, so that objects within a cluster are similar to each other and different from objects of the other clusters. So far, a lot of algorithms in different approaches have been created for the clustering. An effective choice (can combine) two or more of these algorithms for solving the clustering problem. Ensemb...

متن کامل

Extending Consensus Clustering to Explore Multiple Clustering Views

Consensus clustering has emerged as an important extension of the classical clustering problem. Given a set of input clusterings of a given dataset, consensus clustering aims to find a single final clustering which is a better fit in some sense than the existing clusterings. There is a significant drawback in generating a single consensus clustering since different input clusterings could diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011